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GENERALIZED OHM'S LAW IN MULTIFLUID SYSTEMS

SUMMARY
A generalized Ohm's law in multifluid systems under non=-Local=Thermo-

dynamic=-Equilibrium (non-LTE) is derived through the macroscopic description of

the Boltzmann equation. 1t is shown that the first order approximation can be
written as a function of the electric and magnetic field. The secémd order
approximation is shown to be a function of the electric and magnetic field with

the effects of the gradients of density, temperature, and mean flow velocity of l
individual mixture components, and of the effects of the internal degrees of
freedom of the particles. The derivation is limited to a slightly fonized gas. Some

applications in the area of astrophysical problems are discussed.
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I. INTRODUCTION

Applied research in plasma containment, heating, or acceleration, and
research in magnetogasdynamics presently use simplified versions of the generalized
Ohm's law to describe conduction of current through a high-fempet:afure gas mix-
ture. Important effects are usually neglected; examples are: (1) the electromotive
forces due to temperature and density gradients, (2) the contributions to the trans-
port coefficients by components other than fhg electrons, neutral or singly-ionized
atoms of a single species, and by thermal diffusion, and (3) the contribution of the
internal degrees of freedom of the particle. Therefore, this paper is devoted to the
formulation of a conduction (Ohm's) law of general validity for a multifluid system
under conditions of non-local ~thermodynamic-equilibrium (non-LTE), and to
determine the functional dependence between the current density and the acting
- force mechanisms, (i.e., electric field, magnetic field and fhg gradients of the
macroscopic quantities).

This investigation of Ohm's law is based on the derivation of a closed set
of transport equations for the mean velocities of the N-component gas mixture
under non-LTE conditions by means of the macroscopic description of the Boltzmann
equation. In order to allow each component gas in the mixture fo be at its own
temperature and mean velocity (i.e., at macroscopic non-LTE), we use the yeloci ty
distribution developed by Wu [1], which refers each component gas to its own
system center of mass. Application of the Chapman=Enskog [ 2] method of successive
approximations, together with the chosen distribution function, endbles us to obtain

directly, for an N-component gas mixture under non-LTE, both the form of Ohm's
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law and expressions for its coefficients.

Recently, Demeiriades and Argyropoul os (3] have derived the Ohm's faw
based on the 13~moments method originated by Grad [4]), and on the collision
model given by Aligevskiy and Zhdanov [5] for a nonisothermal plasma (with
temperature and pressure gradients but ignoring the internal degrees of freedom).
The results presented in this study are similar to those obtained by Demestriades
and Argyropoulos but have new features due to the contribution of the internal
degrees of freedom of the particle. Further, without elaborate calculation, the
results show that the electromagnetic field will affecf the magnitude of the trans-

port phenomena.



1. BASIC EQUATIONS

In the kinetic description of an N~component gas mixture, the distribution
function fs (\vs, Ir, t) for each constituent gas and the corresponding Boltzmann
equation are used, where the Boltzmann equation can be written in the center

of mass coordinate system as following:

Dfs st o e DGO afs
S o et (ZRE 4 - .
Dt cs o (mS'Es m d:ox IHl Dt ) aﬂ:s
e BFS afs 3
= —_ . 2 a__¢c =X J.(f), : 1
= (€. xH) . 3¢ € &i5r6 5 ) (M
s 3 s
with
J.(Ff)= f'fi~ff)g.0.dQdw, , ' 2
S|($|) f‘r (Sl SI)QJSI s ] ‘ ()

where Cs represents the peculiar velocity given by

C v -C, 3)

S S o

and d:o represents the mean velocity of the mixture defined as

p € = DX pow , (4)
o R
=3 =3 H .
P : ps Lnm (mass density) (4a)

In order to include the internal electronic degrees of freedom, we write

f =2 ¢
P

s (\Vsr r.t, P) 7 (5)
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where p denotes the quantum state, and the mean velocity of the constituent gas
“s" kind is given by
R 6

US ‘ ns p‘r\vsfsp d\Vs[ ()
where ng s the number density,is defined by ns=§ f f; pdws, [E and {Hl denote
the strength of electric field and magnetic field respectively, e, the electric
charge, m_ the mass of the constituent gas of s kind, 9 the relative
velocity befween constituent gas s and |, as gsi = v, - \vi, the dfl denotes

the solid angle and ¢, denotes the collision cross section, (the measure of the

5] ‘
inferaction between particles of s and | kinds ).
By multiplylng a molecular property 9, (vﬁ) and Integrating over all

the velocity space \ and with the definition

méﬂ'f)“' ff o (v )dwv 7)

s 5p 8

the equation of transport for Individual component gas becomes

D
3?( Qp) n 55 o a Btr (n_-f)
Ds 8w e D€, To

-n (== §+c .gﬁ*%tsﬂrmm X M = —5--) 5@3-

5 § §
— ",

+m(c x H) . W«wwﬁ 15z C =808, (8)
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with
BeF)=Fi @)

=3 - 0
: f o, (fsfi fSFi)gSi o dfdv dv. (9)

2
The conservation equations immediately follow by taking ? = 1, m_ Cs, and %msCs +€sp

where € sp represents the infernal energy of s specie at quantum state p, thus

Dns d d —
BT + nose Co + F (nsCs) = Ans, (eq. of continuity), (10)

0 e L 6T T bE)
Ps Dt Psts tar to R A sar - P&

es e DCO _
- S 45 -2y .
ps(ms IE — COXH 57 ) ne (Csx H)

= P AES , (eq. of momentum conservation), (1m
D 0 "2, .1 23 L)
Dt (5 pscs) +-2_pscs (alr : (1:0) or " ‘2 pscsd:s)
DC

e e
- s s o = 9
- pscs ’ (I_TT;‘E ’ ;‘: CO x H T)—f—) * QSCSCS o Co

=A (% psc;? Y., (eq- of energy conservation), (12)



Defines

a) Pressure tensor of component gas

P =pCC =Z[mCCf dC , (13)
s - p 55 sSSP s

b) Heat flux of component gas

|

- = ya =% (o c? :
9" E € (TQSCZ‘LSSP)@s %I(Zpscs+esp)fspms‘i¢s° (14)

c) Conduction current of component gas

Y =ne C_, (15a)
and J}so = nsesCo , (15b)

Therefore, Eq. (11) and ( 12) become:

I—)—qi% €.l¢+l.p-T @eC)-ne iE
ps Dt ps s dr o Owr s soIr ps s s
DCO _
- + emr— =
-USOXH Ps D7 JJSXH PSACSI (16a)
D (0 2.1 72 d
s § o— +-—' ) +—-'. - °
Dt (2 PsCf) 2psCs oK Co) ar % ¢ ns‘asHE
DC —
- xH).T +pC © +p :E—C =A -]-p C2) (16b)
o s ss Dt o s s’



I1f. METHOD OF APPROXIMATION TO THE BOLTZMANN EQUATION.

The Chapman=-Enskog method of solution is to. employ the subdivision
of the Boltzmann equation together with the expansion of the solution. Thus,

first let us expand the solution and write

¢ =fO Dy @y , e
sp sp sp P

where f spdenotes the equilibrium distribution function and f(;), (r>1) cre
the corrections for the non-LTE. In order to separate the translational and
internal degrees of freedom, follow the Born Oppenheimer's approximation;

thus

= dr din
fsp fs fs (P), (18)

¥ . e e .
where fsr (\vi, ir, t) represents the distribution related to the franslational
degrees of freedom and f;n (p,ax, t)= n (o, v, t) represents that of the internal

degrees of freedom. Then the expansion of Eq. (18) becomes

o) =@ Qe e O+ 2V oy 09)

= Zr(O) f-in(O)(p) + f’;r(O) fin(O)(p) Y:r + f:r(O) f;n(O)(P) Yin (6) -

where we write

f:’(‘)=f:'(°)\f:’ , and fi"m(p) =fi"(o)(p) "), 20)



with ‘?:r denoting the usual correction proportional to the spatial gradients of
the macroscopic properties and ‘fin(p) denoting the correction for population density
under non-LTE.

‘Using the equilibrium distribution function given by Nakagawa (4]

and Wu [ 1], we have

2
(0) _ .in(0) r ss _3 s
= + e - [ .
i:sp Fs () Fs l} 2!<TO 2)a5+kTo 0:5 ’Bs+“'] ! @1)

with F;n(o)(p) and Fs denoting Boltzmann and Maxwell distribution functions

referred to the center of mass system of the mixture respectively; i.e.

-€
Fin(o)(p) -n gSp exp ( Sp/k TO) (22)
s s g _exp(-¢ /kT) '
and
o M act
s =(2ﬂkTo) exp (—ZkTo)' (2)

where To represents the temperature of the mixture,

AP
To = — (24)
and
TS - TO .
as = T ’ (25)
3
IBS = U’S = CO 7 (26)



Similar to the BGK modeling (7], we shall only retain the terms as and
tBs up to their first order. The uniqueness of this expansion can be secured
by requiring the conservation of mass, momentum and energy with respect

to € and T _ system, which are
° o

£z fmiac =0,

5p 5S s

22 f{m cac_ =0, r21. (27)
[ S S -

gy (fO0d 2+ =0 .
spffs (2mscs €sp) d(I:s 0

Now returning to Eq. (1) we may seek the successive approximation
of the solution Fs by introducing appropriate successive subdivision of the
equation. Following the work of Chapman and Cowling [2], rewriting Eq. (1)

in an operator form,

D-J.=ol (28)

and ifs subdivision

D(r) _ J(T)el_J(f)non-d:
s s si

0, (29)

where

p =D and 4 =x el jE)non=el (30)
S r S Sf r s 5
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The Enskog's method requires the subdivision of first order approximation
to be the vanishing collision integral, and the next order approximation to be

balance the spatial dependence with the first order collision integral. With

the menfioned scheme of approximation, the governing equation for successive

order can be obtained in the following manner:

To the first order of present approximation;

e oF .
s . s = _ 5 (O)el (0)non=el ,_in(0), , .in(0)), \\—
;n—s- (€, xH) .ﬁ; ?Jsi (FsFi) + %Jsi F. ) Fi @)=0, @1

As we should note, the expression of F;n(o)(p) and Fs given by Egs. (22)
and (23) do indeed satisfy the condition of Eq. (31). Therefore, they are the

first order solution of the Boltzmann equation (i.e., equilibrium solution).

To the second order of the present approximation we find;

g br & ¢ (FIE_ Dt ) - o€

e 2 2@
S —P . 3P —
+ms(COXH)°5CS BCS Cs'ar‘to]

e
=_ .5 3t _y g(1)el
m_ Fs (Cs xH) - o CS (Ys * 65) ;E Jsi l:FSFi((SS ¥ 63 )
- (Z)el fr _t
RN D=$x=i ¢ ‘fiSJ , (32)
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(We should

where 65 denotes the correction terms involved as and Bs .

(2) non-el

note the term J | s has been dropped, because it is few orders of

()eice

magnitude smaller than the term J - O G
S

Substituting the expression of fﬁg) from Eq. (21) into Eq. (32), we find,

Dlinn dlnn

(2)el “'+ tra_ o s s
viyl= + .
Jsi [FsFi(Ys iSJ Fs Dt Cs o

mC mC2 m_ esp- €$'| DolnTo
+[(ma 2) (2 ¢t GBI T 1K
o o
Fm C2 scf m eSP—E'S] 3InT_
g L(sz Gt % T R T T | o
o o
2
m C 3 DOOLS m_ DOIBS
G2 i S oy
o o
mC2 3 aOLS m BBS
_3 + ._S.
+¢s (2kT 2) o kToCscs' ir
s Doco M % Doco msC s‘,Bs
")k G e ) TR
m d m. 3
i (@ -qs) <Es‘ts ) _a—r.co - Iﬁ;fsscs *3r €:c>
e msﬁs e mSCS mS{BS
-5 +-—— .
((E x H) . m (¢o+¢s)xH (kT O('s-l_kT X
M s o o
33)
with
o
E_Q. = 2 ¢ ° ’ (33a)
Dt ot o o
and
€sp Gep exp[" esp/kTo]
(33b)

z
e, = B ,
z 9ap €XP [— esp/kTo]
P
11



D InT D@
In order to eliminate the time derivatives (i.e., on 2, 5T °°° etc.)

from previous expression, the appropriate conseivation equations to this first

order of approximation are needed, and are;

for number density,

Dons 3 3
+n oo F oo o =0, _
Dr "sor ° Cs or (ns!Bs) 0 (34)

for momentum,

Doﬁs ) Doq:o 3 Pes %
+ — 290 — -p |2 p+2
ps Dt &rPs * ps Dt * psBs oy Co pS L“S‘E +ms (CO "'[Bs)le

=z S (35)
]

for energy,

3 Doa's 3 DoTo
-fnskTo +ns -2_k (1 +as)+,nscs,in% Dt

Dt
5 aTo d Doq:o
* ns (fk * cs,inf)ﬁs ) EF'"L Psar ¢o+ psg-?’s T Dt
d es Q, -CLS -
. - s =yl
¥ kT0 o (ns‘Bs) psﬂas (ms COXH) i Tel ’ (36)

5j
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For the total gas

DoQ:o 0
+ =
P Dt '”soxH o P 37)
and
DT
3 oo , 3 )
4 — +2 — = —_,
(2 ik s nscs, inf) Dt 2 I<To djr (gnsfss)
5 aTo 3 s s
= . —_— -X ~E+-= =
+§ {:(Zk * Cs, inf) ns!BS Ojr TP I3 co s [psﬁs (ms‘E+mS COXH) 0
! (38)
with
= + '
Ps ns(] or.s) kTc ! (39)
= = Z
p nkTo Zp s (40)

where it is the specific heat due to internal (electronic) degrees of freedom
4

and is given by
c =_S s (41)

with

-52= p sp sp sp O (42)
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H

el el . .
The symbols T and ’TE represent the relaxation coefficients for momentum

si si
and energy respectively.

Substituting Eqs. (34) through (38) into Eq. (33) and retaining only those

terms up to the first order of & and ‘Bs' we find,

2 2 -
(2) el m C m C € =€ dInT
J.FEMFY I _.S_S_é- ss sp__s ___©°
REA }F Fs 2kT 3 :szoo‘s+ kT_ €=

n
+-:—as¢s ) [(—s_—_)atr P"‘a"“;('—)]

S

msCs2 5 aa M o s
+<2kT -—2-> s *(1-a )—CSG: rco+ﬁcscs: ar
o o
c . mC2 m C2 € -¢
+2 ?___s,lnf(ss _§_)+ S°S o _SP__s C)
313k 2kTo 2 2kTo s kTo alr

g m C2 nsesﬁfs mSCf 3 {BS
+ ’E [3 ( -_)+]];'1—SE=E.(.D5°XH)

3<2kT 2)nkT KT "2

218 +on0:

“‘-rﬁd-—-— (heC XH)% : . (43)

The expression of Eq. (43) leads to the functional form of ‘1’5. Since ‘i’s,

like fil) itself, is a scalar, therefore, ‘i’s must be a scalar.
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BlnT D

tr o ) o0
vieip —2.3:2 ¢ -@.d-kZ.C -D .5
s As o Bs -1's 0:0 Gs C}“s Ks S Co le dr

3
‘%"a;ff‘s L -E - M ﬁss . (Jssoxm:)]

- - (€ xH) n (44)

o) ns o) 3] s
H = - o {
: with Hs ( ps n ) s P ok h ) (44a)

The coefficients /As' Gs, IDs ,lLS cndM]s are vectors, §BS and ggcre

tensors, and Ks' and MS are scalars; they can be expressed in the form

wr V2
A = (—=2
S m

S

~
[(] - M‘é sm,n “mn 3/2 (é) Y (esp)
—aszﬁs ?n,n a'mn S?/Z (éf) Y’ (esp)] !

’B —(1-&)@"9@ Z,n mn 5/2(¢)Y (e )’

a1 V2
‘Ds = m ) ﬁs ?n,n dmn S;n/Z (éf) 8 (esp)
S y (45)
6 = (oo, 2a x s @Y € )
s m s?s mn Imn °3/2 §S sp’ ?

- o] m 2
Aﬁs - ‘Fs 6?3 %nn hmn S5/2 (és)Yn (esp) !
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— S,i t 2 n . 3 n.’
T nZlgiWnST/Z (@s)Y € )+c, r%mkmn[r;l/.?(é)-i] Y (esP)'
A 1/2 _ |
"'s=§ET; (-m_s—) Bs m,n mn [53/2 (gf) + ]] Y (esp) ’

= 1
Mo B M [3 Syp (@) F ]Y(e )

e (B +tacl )

~ § S5 SO m 2, .n
/M\]s kTo rzm:'l,n M]mn S1/2 ((Zs) Y (esp)

Sr: (F?) is a sonine polynomial, used by Chapman and Cowling [2]
and Burnett [8]. Yn(esp) is the n-th order polynomial used by Wang-Chang

and Uhlenbeck [9], i.e.

O, -
YWe )=

(46)
vWe )= s

while @S is the dimensionless velocity

- 1/2
LA A “7)
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The requirements Eq. (27), imposed on the solution lead to the following

conditions,
U,IA -
s
55 JFFin(O)(p)md: 1°s d€ =0 (48a)
s p $s s s s a
G
s
(L
S
M1
L s
BB
s
in(0) =
;zzpj'Fst ®) K | dc =0, (4b)
M
s-
B |
S
A
¢ (g gin0) 1 2 .
§ P J-Fst ) G mCs +e:sp) Ky d €, =0, (48c)
M
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IV. OHM'S LAW FOR N-COMPONENT GAS MIXTURE UNDER NON-LTE

IN THE FIRST ©&RDER APPROXIMATION

By taking v, = e Cs in the Eq. (8) and together with the first
order approximation of the distribution function of Eq. (21) leads to @
generalized Ohm's law of first 6rder of approximation, describing the condition
of current in an N-component gas mixture in the presence of eleciric and

magnetic field at the condition of non-LTE, we find

D0, @3 ¢ 4 0 2 ¢ 0 P | fes?
dr o P

Dt s s s “or o of ?:Ps & P
pzs pes ©) Pes 8. ‘!35
-2 - — =27,
o (E+C xH) - o= J ™ xH =5 v (49)
s 5 s
m.
si
where
Jj(o) =e JC f(o)dd: = nell, (50)
s s s's s $5 S
is the consequence of Eq. (15a)
= ity), 1
Peg = N8, (charge density) (1)
and
M, KT 95
¢yl =lgZ nn ote ° oMy (52)
m . 3YT s 5/2 si sj %
sl (kTo) 0



m m,
s |

sj - m + mi
momentum transfer. As we note, the expression of Eq. (49) is a form of

with [ , the reduced mass and 02? the cross section for

eneralized Ohm's law for the constituent gas in N=component gas mixture.
g g P g

For the total gas, we just take the summation of Eq. (4?) over all the

components, thus

2
P
9 e O
=— — - = +
FETR T s (-2 =) (E+C,xm)
P
-2 40 m=0,
s p s
with P, = %pes (total charge density) .

This expression represents the generalized Ohm's law, to first order
approximation, of a gas mixture under the condition of non-LTE. In other
words, this gives the law of conduction of electric current in a non-LTE gas
mixture. This form of Ohm's law can be used in problems of the motion of
gas with anisotropic conductivity and where non-LTE conditions prevail ,

such as certain regions of the solar photosphere.

19
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V. OHM'S LAW FOR N-COMPONENT GAS MIXTURE UNDER NON-LTE
IN THE SECOND APPROXIMATION

To determine Ohm's law in the form given by Eq. (49) we omitted the
correction term in the distribution function of Eq. (19). Thisis due to the
assumpﬁ'on that the gradienfs.of macroscipic quantities are negligible small,
but this is not always a valid assumption. In particular, when the gradients
become appreciable, i.e., the situation in which deviations from equilibrium
become significant, sﬁch effects have to be included in order to get a more
realistic description. We shall go to the next order approximation by using
_the distribution function given by Bq. (17) and (20) together with expression
of Eq. (44) for the correction function ‘1’5. Again, by putting ? =e ¢s in
Eq. (8), we obtain the form of the generalized Ohm's law to the second

order of approximation as follows;

2 d P
(JJ) -Da", ¢°+~Ds--5;¢o*g;(-a:~l°s)

2 .

Py DC ¢ e B, -1

0 - 28 - 88 i s .
- .5....,. (E+C xH)*p w7 =5 JxH = Ell ra (54)
s s s m.
si
with
= foc fOn+vfac (55)
§ § 8 H s
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more specifically, we find

J =neB +3 e¢f(o)‘1’d¢ , (56)
s sss p s ssp s

and the second term on the right hand side of Eq. (56) can be calculated further,

thus
a!nT
Oyt ¢ = in (0) ° _p .9
3 fegf )i s JQ?FF ) 2 Big- €

&

o s
(Bs.dls Ks-a-;--(]:o fDS.-—a;—

3
-&ﬁs' 'a—r-Bs _ﬂ's - IE
=M, B, - (JSOXH))

p 'M]s . (q:sxéHa):] dC€

where only the first order terms be kept.
Together with Eq. (45) above infegration can be performed thus we find

aT

) s
p smsfsp stq: Ay [y A d‘ ASIE '&4 (o

(57)

in which the terms of order of magnitude higher than € have been left out, while

the terms of spatial gradient and 8, are classified as the order of magnitude of €.
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where

ne m B
s s s Top o m 2, n
A ;375 .[cs ,(2kTo e L= ng Zm,namn %3/ (gS)Y (BSP)

m ol n 1
- e ¥ 58
c}Ls )gs zr:n,n % mn S3/2 (65) Y (esp)] T0 d Cs (38a)

ne m —{852 o 2
- 2 n
A2 TT372 ¢ (2kT ) e OLsEs zr:n,ngmn S3/2 (gs )Y (esp)d cs/
(58b)
2
i =) e Pog 25 5L [s“‘ (-2)+1]Yn(e )d €
372 2kT FsBkTo m,n mn 3/21{?5 sp s
(58¢)
o 32 _..2
A = N, e.8, C (___S__) o ?s
4 n372 s 2kTo

? 2 gm ey 25 ye )]
[n kT r%m an (3 53/2(“’25)+ 3 ) Y (DSP)J d¢5 )

s ©
. {58d)
2
A5_ne m | ‘?gs . p m 2. n -
7 2kT ¢ gs m,n mn S3/2 (ES)Y (esp)Cl Q’s ,
(58e)

Thus, the form of current density to the present order of approximation can be

wiitten as:
BT da
J=neB = A= Ay dl-AJE-A (L xH) - Ag 5 (59)
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It is clear that the first term on the right hand side of Eq. (59) indicates the effect
due to the difference of mean motion of each constituent gas, (i.e., macroscopic
non-LTE in velocity), the second ferm represents the contribution from the temp~
erature gradient (i.e., thermal conduction) which will become very important

in calculations of shock structure and some solar phenomena, the third term re-
presents the diffusion effects which include both ordinary diffusion (i.e., local
gradient of concentration) and thermal diffusion, and the last two terms indicate
the contributions from the electric and magnetic fields. We should note that the
energy distribution function of each constituent gas has been modified according
to the conditions of non-LTE. These effects are incorporated within the coefficients -
AL, As , Az, Au, and As, as can be observed from the expressions of Eq. (58).
These coefficients are called transport coefficients, and will be determined by the
coefficients of the expansions of Eq. (45), so—called "Kinetic coefficients”, and the

Boltzmann transport equation. This will be given in the following section.
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VI. CALCULATION OF THE KINETIC COEFFICIENTS

In order to give a complete description for the generalized Ohm's law,
the transport coefficients have to be given in the form of the appropriate kinetic
coefficients. To determine these kinetic coefficients in terms of the expressions
of the collision integrals, we shall employ the variational principle which was

originated by Curtiss and Herschfelder [10] in this study.

1. General Statement of the Method
By substituting Eq. (44) into the L.H.S. of Eq. (43) and equating the
corresponding coefficients of dInTo , 3Ca , di; efc. on both sides, we

o dir
find that /A, Bg, le ; €, ¥, Ki i o, M; andIM; are special solutions of the

following equations.

inblr Mg Csz - _5_ _ Mg C32 Eq -Es - (A + B
o (e ~ 7)ok % kTo"] Co =neZ ny Loy (s Ty,

F:n@[ '2_ a‘s Cs (6sh - ék)‘j = Ng z n; ISJ (@‘2"*’ @?*’ GO:L‘— (E'u;)
4

8

FPO e (1-6,)€, €, = ng 2 nyLy (B, +8y)
J

__2_F1n(o) [2 _E_g_l_inf (msC§ - 5 )+mscs a, ~ & - :]

3 ° 3 k 2kT, 2kTo kTo
=ns anls,j (Ks +KJ)/
: > (60)
ia@Mg  ~ Op = H o+
F kTo CE q:s Ng JZ ny Isj ( 5 ‘HS' ) ) ‘
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1 (o mng 5 P
Fi ”('Zm_- —2—) <, -nsjszIsJ (‘Ds + 1D, )/

2 O m, C2 .3 es €, _
36 Gt ) AR T e vl Ltk

2, mC? 3)+]] B,

g 2, ms Co 3 =
Fs [ 3~ (5T 2 nkia M jZnJI.;J (MoBs + MyiB; )

Fignw es<2‘Bs +q, CO) . &o
n. kTo

=, T M1, .C *M 1. C
n J"JLa( 3 :),J

where the notation I;; has its usual meaning as defined by Chapman and Cowling
[2] and the 8y is the kronecker delta.

As we note, these sets of integral equations (Eq. (60) ) given cbove,
are quite similar in form; thus we can w.!te one general form for a tensor T,

which includes all nine of these integral equations such as that

Rs = ng Jznslsd (rm +‘11',1) y (6])
with

ng Zony Iy (TG +IN) =27n, & S(‘ﬂ;i '*‘ZIE;I'E -0 ) Fi*F, gkjcjjld\vj p
J P .
' (62)

where 0%} denotes the elastic collision cross section. The correspondence
between the symbol #, and II} and their counterparts in Eq. (60) will be shown
on Table 1. The solution of the integral equation (61) is not unique, buf this
problem of uniqueness can be resolved by the solubility conditions posed on those

functions /A,, IB,, etc., which can be also expressed in a general form of

& ng S(']I;.CB)FS dC,=0 ’ (63)

s
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which, in fact, requires that the value of n,, €;, and T, satisfy the conservation
laws. Thus, the solubility conditions serve to specify exactly one of the solution
of Eq. (60), i.e., they serve to remove an indeterminacy obtained. At present,
we shall show how one can make use of the variational principles to obtain
approximate solutions v the integral Eq. (60).

Let t; be a set of functions which satisfy the equation

g(fszo\’,s)dve=-aznan5 [fs:fs"'f‘,]sj ' . (64)
The bracket notation represents the integral

[G,HJBJ=SSG (H=-H")Fs F; 04 dwv; dws , (65)
where superscript prime indicates the quantity after collision. It is easily

*
shown that this is identical with

1
[G, H ]sd TS(G - G‘) (H - HI) FsFJ 9 s) dVJ d\Vs 7 (66)

so that

[G,H]; =[G, H1l,=LH, G . (67)
From Eq. (61) and Eq. (64), we find

? ne nJ[fs;']T; +‘]l'3]”332n5n3[fs;f5+n]sj , (68)
where the t; are the trial functions and T; are the ex;:ch solutions to the
integral Eq. (61). Now, if we sum Eq. (68) over S and make use of the symmetry
'properfy of Eq. (67). The result is

(,T)=10r,8 (69)

where the curly bracket represents

{G,H}=Z nn,[G,+G,, H, +H, 1 . (70)
4 . .

*
Detail see Ref. [2 ] p. 67
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It is clear that { }also possess the symmetry property

{ e, Hl={H 6} . 71)
Since { G, G} is the sum of the integrals, the integrands of which are
essentially positive,

{G.Gl30 . | o (72)
If G satisfies the solubility conditions, then the equality sign can apply only
if G isidentically zero.

Let us consider a particular curly bracket

{’rk-T,'f-'If'}>O- (73)
From the previous discussion, we note the equality sign can apply only if t is
identically equal to T. The curly bracket is a linear operator. Hence, from
Eq. (73) we have,

tt,ty-20{t,?3+{T, T} 20, (74)
by using Eq- (69), we find

{r,ty <{m, T} 75)
This is the statement of the variational method of obtaining approximations of
the solution T, . Thus, the method of solution as follows; we begin by choosing
a set of trial functions, t;, which contain a numbe-r of arbitrary parameters.
‘Then, if only those trial functions are considered which satisfy the soi ubility
conditions (Eq. (63) ), the equality sign in Eq. (75) applies only when T, and
t, are identical . Thus, the best approximation of the frue solution of the
integral Eq. (6]) is obtained by maximizing {t, t } with respect to all the
available parameters in the set of trial functions. That is, for the best

approximation;
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G{f,f}=—26§g(fs.ﬁs)d\v,=0, (76)
This, along with Eq. (64), which restricts the choice of the trial function, forms
the basis of the variational method of solution of the integral Eq. (61). For the
present purpose of calculation of those kinetic coefficients, we consider the trial
function which is known function as we have already chosen those functions of
As ;B; ... etc., and which are expanded in a form of a double finite series
of Eq- (45). Thus, we now take the trial function as a finite linear combination
of this double finite series and its arguments are Q? and € .

€-1 n

s 2 team (8) Sw (&) Y (&) 77)

m=0
n=0

~

—

and these polynomials satisfy the orthogonality condition

XX S ) S ) dx = Lot ml o 78)

m]l
with &, known as the kronecker delta. In which the values of the index n'
and the meaning of the tensor \Ws in Eq. (77) are shown in Table II.

Let us define

~

P =Z ) (R W) S (8) V(G )dv 79)
and
® =:Z.-‘ toun D?’snm . ’ (80)
S/ m'} n

‘The trial solution should satisfy the following equation
S(fB:Rs)d\vs =-§2 ngny [tgits +ty ] / (81)
this is the constraint equation on the trial function, with the aid of Egs. (77),

(79), and (80), we can rewrite Eq. (81) as such
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0
g T
+%‘%‘m2‘ag “ ng ny {fsm"n" [\Wa Se Y W, S' Y* _}
n=

+ tdmn [\\WG Snf Yn;\Wd Sn, Yn }" f = O . (82)

According to the theory of variational f)rinciple, wé had

60= 0 . | (83)
Then, the problem is to find the exiremum of ©® subject to the constraints of
Eq. (82). This exiremum is determined by the method of lagragian multipliers.

Let t; be the multiplier, thus

o @ * awr =
o toun ’ :‘2 " (afsmn ) 0 ) (84)

Performing the indicated differentiations with the aid of Egs. (80) and (82), we

obtain

[ ] + ‘LS ]Rsmn

11
n

+ 3 % { 24t (W, S0 (8) Y EobW S @)Y 6 |
B N w
* ()t [ S (BD) Y (o) s WS (B2 Y (60) |
(85)
with
s=1,2,...., V; number of constituent gas,
m=0,1,..... E~1 ;]}number of terms of the expansion

n=0,1,..... g -1 ;Jseries being used,
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It can be shown that the only solution to this set of equations fogether with

constraint equation [ Eq. (82)]isi
=1 i s=1,2, e v oo (86)
Putting this value back into Eq. (85) then the constants tg, can be determined

by the equation

,E"] mm"nn"
r Zz Qas fjm"n“ (g) = - Rsmn ’ (87)
! ml;O

nio

with

mm"nn" - z o m" "
Qs =% ng nq 653 L\Wa S Y i Ws S Y
q 8q

m ~ m" n
+ 6.5‘1 [\\Ns Sw Yn; We Sw Y* Jq} . (88)
s

Eqgs. (87) and (88) together with the solubility condition , Eq. (63) are the

equations which are used for determining those kinetic coefficients.
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2. The Coefficients of Conductivity of Multicomponent Non-Equilibrium
Gas in the First Approximation
In Eq. (59) the coefficients A1, Az, As, A, and As are the coefficients
of conductivity of a multicomponent non-equilibrium gas, and its general
expressions are given by Eq. (58). To the first approximation, which means by
only taking the first term of the double series expansion of Eq. (45), these

coefficients can be expressed in terms of kinetic coefficients, thus

Al =3na P "'l'n:— [(] -a‘s) (010'1'001)_"@50‘(;0] ’

8

k

Aa=nses—r;l-:%'fo gdoo p

n, e>
Az =2 :n £ Loo ’

P (89;
Ay, = 3‘12_ = 1B Moo
my k To

As =3n; e, To (dio+ doy )

3

For determining these kinetic coefficients in terms of collisional
integrals, we shall employ Eqs. (87) and (88) together with Table I and II,
which are given in the previous section.

The equation to be solved for ay, and oy is

a m; < 5 m, € _Es Y
o [GE - -5 Jamngy e,

(60)

and in this case the trial functions to the present order of approximation will be
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fs = Es o 53/12 (Ci )

’ (89(])
ts = Ba aa YU}%) ’ (8%)
=1, ag (89c)

Taking the scalar produ‘cf of Eq. (60) by Eq. (89) respectively and integroting it

over the whole velocity range, it yields

10 10 « 10 _ 14
2A10 910 *A01 %01 T 200 %00 3
01 ol ,a L0 , _ 3 _cint
Ao %10 F201%1 TT=, “o00 %00 7 Tk (90)
1<, , 00 1<, ,00  ,.,00 . _ 14
o A10 %10 Tg Po1%r TP00%00 T T3

where these A's are collisional integrals, it can be easily evaluated by knowing

the interaction mechanism between the gas molecules, and they are given in the

following;
i ~
OO Qﬁ (m m; )2 (])
Moo ™% 857 ) wm, — M)
2
2 ])
01 _ _ cs,xm‘ (mem,)
AOO EJ: 8( ) ( ) mg +m3 QsJ (]) 7
=N () Mm \.,
00 _ 1-% 2 ( ] > ;
Alp~E 8 (q ( T T G, (2) - =0, (1)
16__ .00
Aco ™ Ao - 1 > @n
) (1
00 _ a. (c {me m )
= o B jrint b
Ao1 §8a5\k)m+ s (M
01 _ c.,int , 00
Ao ™ Tk Ao 4
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10 _ 10y mg {5 ém’ 5m? 1 (M
Ao~ 890 oy, ; 4 [(mmf F )t O
2 (1) = mn -
5m’ my
"y @ oy O )
| 2) }
2m m
Tingrmgy @
AO] =y Cssint *c,,int (]-G.d' (msmj)% (])]
o1 k I-O_L,)m'l‘m % (1) 4
¥ 3
10 _ rine [ 1 2 my= 1 5 1
Ao1 ™ ”j‘: c’ki : (12) @r:s J:n,:]d)e (Qa(.i ) @) - 5 Qs(:l )(1))
",
with &Y .
" 1/2 f g5, 202 (1)
Qs,j (I’) =m o e 953 ‘ ‘%sj dgs,j 7 (920)
and
My = f(1-costx) g, b, (92b)

where % denotes the scattering angle and b denotes the impact parameter. -

Solving from Eq. (90), we dbtain

64
15,,01,00_,00,01, .15 % 10,01 . 01,10
7 #0140 P01 200 T T T 01400~ 201 A00)
3 cgint ,,00,10 . 10 ,00
77 Borfo0 201 Aoo)
T‘H ]_ , (93)
ol=
L 10,,01,00 ,00,01,. .00, 10,01 . 01 10
2A10 HA01A00 ~A01 200 T AT0 A1 AG ™ ZAg1 Aoy
01,.00,10 10,00
A0 Bo1400 " A01 A00)
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_g_ cg, int (4A]OAOO-AOOA]8)+1§- Qg (AOIAIO 01

10
10700 "A10%00? * T T A 10200~ 2200210
15 ,, 01,00 00 , 01
419 -
) 7 PooA10 20010
001}' (94)

01, 10,00 .00,10...00,01 .10 .. 10 .01
2A01 WA 10400 " A 10200 TA01 A10A00 " 210400

10,,00,01 ., 00,0l
A1 AroA00 " PgoAg)

15,,10,01 _ 01,10, 15,1, ., 00,01 . 00,01
T HA0A01 " ApAn ) Tl ) g Arg T A0 A0

3 c.,int 1w, 00,10 00,10
T o BoAor PAgiArg)
n 4 (95)
[¢ oo

00, 10.01 .01.10...10,.00.01 ..00.O0l
2A50 4A0A01 = ArpA o) TA00 Bor1A 10~ 2A 0401

61, 00.10 .10 .00
TAgo Ai0h01 ~ A pA T

For determining goo , we shall use the following equation.

h ¥

. b ¥ )
Fin(o) Fs [;!n— % ¢, (6sh = 653’)] =g JZ ny ISJ (GS + GJ TG G )’
8

and trial function

t, T Fs goo
We find
3 10 , 01 10 .01,
3 @A AN T AG Ap) \
[90(5]" (96)
Det l A l
where '

_{..00,,10,01_,10,01,,,00,10,01 . 10,0l
Det | A | 32Aoo(4AloA01 Ao1A10) TA10 401 A0 = PooAor)

00,10 .01 .. 10,01
A0 Aoor1o™ 210800
(97)
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For Loo, the equation to be solved is

2 e (MG L 3 ) &G . ,
3 Fs Fs ( ZkT;L 2 kTo ns? ny I” (‘L, T)Ld ).

with the trial function

i'zs = gs Lo o]
We find
_ 1 1
[ °]— 8n ‘
(e gl + 2 =L (8 Bk (98)
and
(M

) _ m
[:@slgs ]s_j - 8 —_—_}.Lr;; Qsj (]) L4

Y ]
(mem ) o)
8 0, (1) - (99)
(ms +m,j)

[ kgsr EJ]SJ

For determining Moo, the equation which needs to be solved is,

info) 2
FoFs [ 3 (3T ,

£ S 3 8 =
7 s - )+ ]] n:ETQ - ns% ny Iy (MBs + My3; ),

and the trial function for the present order of approximation can be expressed

as
fs = —32— MDQ
Thus we find
[Mac] = T’"LT% v, st (100)

Finally, to determine the kinetic coefficient dgs , and while the equation

to be solved is
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Fin(o) E ( Mg C‘i
s ]

with the frial function

tg &

5 -
kT 2 ) €. =nZngly (IO, +1Dy)

BZ, S €)Y ()

We find
01
- 14 Ao
10] 5 70 .01 1001
At0h01 “Po1A 10
arrd

01

[d ]=_ 15 Ao
01 7 7001 1001
AtoA01 ~A01P 10
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VII. THE ELECTRIC CONDUCTIVITY AND THE GENERALIZED OHM'S LAW

FOR A PARTIALLY JONIZED PLASMA UNDER NON-LTE.

In order to show the significance of these general expressions of the
electric conductivity and Ohm's law for a N~components gas mixture under
the condition of non-LTE which we present in previous section, we shall

choose a model of partially ionized hydrogen plasma, namely, it only con-

sists of electrons, singly ionized ions and neutral atoms.
1. The Generalized Ohm's Law at non-LTE
From Eq. (59) we obtain;

electron current

d = -nelBe t+ {Al]e 2;” [Aa] e G +[A

i S O S A

and ion current

J: = nelpy - {Aili ‘2‘%‘" - [Ae]i di; -[A3]i‘E

|

o/

- [A4]1 Jio x H) + E‘\s]x a?r

- Hence the total current is

J=4 *t L
= (- nB)et [A]o ST - o] 2L

+[a]. a, - [A]: @
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We should note that, if the LTE condition can be established, the Eq. (104)

y ={[As]e - [As]}i} E (105)

this is the ordinary Ohm's law which we used quite often, and if we compute

becomes

the [AS:] s - [%]1 from Egs. (89-1C.) we find this is indeed the result
of the electric conductivity given by Spitzer [ 11] ignoring the higher
order terms (e.g., the non-LTE effects).

2. The Electric Conductivity at non-LTE

From Eq. (104) the electric conductivity at nca~LTE can be defined

by
%hon-LTE ~ ALTE *hoo ' (105)
with
Ute T [Ag] o~ [Af*]i
-4 2
= 1.53 x 10 e ohm=-cm (106a)
3 4+3 %‘
InA = In| —3 (“T ) . C (10b)
3
ze Tn,
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Au = —]—-—- {(mlﬁz “nefB)e + [A1]° %—;‘}L -[Al]i %Jl-—:‘-
+ [Aa]e df, - [Aa]i d.
: +([A4], ko - [Ad]: Ju) x H

r 00 o 0
* LA5]° Sirr Es‘s]i dir } ! (107)

and those kinetic coefficients [A1]...etc. can be computed from Egs. (89-101)

and it could be found in the appendix.
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VIII. DISCUSSIONS

On the basis of this derivation, we have developed a generalized Ohm's
law for multicomponent gas mixture under the condition of non~LTE to a second
order approximation, that includes all possible distant collision effects (i.e.,
both elactic and non-elactic collision), the effects of temperature and pressure
gradients of individual component gas, and also the effects of the magnetic field.

The general expressions for the coefficients of Ohm's law in terms collision
pcrcmetei’s are presented, and also hqvg developed a simplified expression for these
coefficients in a specified model, namely, the hydrogen plasma.

In order to conclude this study, we would like to point out while the
effects of non-LTE need to be taken into account, this can be characterized by
the number density of electron (ne ) and temperature (T) of the gas by checking
with certain particular parameters. For instance:

(1) The steady state and homogeneous plasma

In a steady state and homogeneous plasma of sufficiently

limited optical depth such that the photoexcitation and ionization

in the plasma (i.e., the reabsorption of radiation) can be neg-

lected, the validity of the condition of LTE can be expected

only if collisional rate processes dominate the radiative processes

(i -e., the radiative decay and recombination), and thus the

criteria for the validity of LTE can be established by taking the

ratio of collisional rate and radiative rate, according to the

results of Griem [ 121, it yields
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z-l.a 3 %
ne = 9x i0*” —f—e—i ——-:-I-— , - (108)
1 y4 EI Z EI

where no, E5%, EI : Z, and T represent the nurber density
of electron per cm’, first excited energy in ev., ionization
energy in ev. atomic number and temperature respectively.

This formula implies that for a specified model of gas, at
a certain temperature there exist a corresponding electron
density for which the LTE can be expected. Such a plotting
of ng vs. T isshowninFig. 1, and the regions of LTE and
non-LTE are indicated for a hydrogen plasma.
(2) The homogeneous transient plasma

In this case, it is usually necessary only to prove that,

in addition to fulfillment of the criteria for LTE in a homo-
geneous and time independent plasma, equilibration times
are sufficiently short for the establishment of a quasi-
stationary near-LTE state, physically, this is the situation
of the gas which is produced in the shock tube behind the
reflected shock front. In such plasmas, collisional ioni-
zation occurs mainly via excitation info intermediate
states. Thus the ionization and excitation relaxation time
is determined by the slowest processes in the chain, thus
the longest time to establish LTE (i.e-, the inverse coll~

isional -excitation rate of the ground state) can be expressed

by
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z-1,a ' z-1,a i

T n 1.1x 107 Z° 4", Ez kT _\ *
farne (0, #ni™ )  ZE, Z°E

I

z-.!.,a
exp E
kT sec.

The validity criteria for LTE then can be established by the

inequality

1,8 < LTE
;qu..}_ ; 1, uncertain
char. , Non-LTE

with T indicates the characteristic time. A case

char.
of hydrogen plasma is plotting in Fig. 2.
(3) Vdlidity cﬁ teria LTE in steady state gasdynamics

High temperature ionized (or dissociated) gases produced
in a channel are stationary for all practical purposes, for
instance the plasma produced by a stabilized arc, but con~
ditions vary with respect to the distance. In addifion to
the requirements for LTE in homogeneous and fime-inde-
pendent case, it is therefore necessary that the spatial
variations of the electron temperature be small over dis-
tances that a given particle can diffuse in times of the

order of the equilibration times. This diffuse time can be

expressed by the mean free time approximately
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E
I -1
Tf 23] 3X ]09 ("ﬁ'—) (na +10n§) , (].”)

if Tt = Tehar. then the condition of LTE can be

expected. A similar plotting for hydrogen gas is

given in Fig. 3.

Based on these informations, it is possible for us to know whether the
effects of non-LTE should be taken into account or not at before hand in general,
if it is necessary to use the generalized Ohm's law as we derived here, however,
we then should examine each term in Eq. (107). It is very likely, only one or
two terms have significant effects. For instance, in the laboratory for a shock
tube study, the terms of pressure and temperature gradients are much more im-
portant than the others. In the astrophysics problem, we know thire is a discre~
pancy between the measurement and theory for the prediction of the electrical
conductivity in the upper photospheric layers, which the author believes that is
because the condition of non-LTE prevails in the upper photospheric layers. This
will form the later subject of further investigation.

Finally, we should like to recapitulate the mainﬁssumpﬁons on which
this theory is based on:

(1) All the restrictions posed on the Boltzmann equation have inherited.

(2) The interactions between the particles and the external field have
only the electric and magnetic field being considered.

(3) The energy of the translational degrees freedom and the infernal
degrees of freedom are assumed fo be sepercble.

(4) For the translational degrees freedom, the distribution of each com-
45



ponent gas throughout the particle velocity space is described by the Maxwelliam
distribution function plus the correction terms due to the gradients of macros;copic
quantities for the translational degrees freedom. k

(5) For the internal degrees of freedom, the distribution of each com=
ponent gas throughout the particles energy space is described by the Boltzmann
distribution function.

(6) In the present study only the electronic internal states are considered,
which is understood that there is no difficulfies to include other types of internal
states in this theory.

(7) The effects of non-elastic collision are shown explicitly through the

collision integrals.
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FIGURE CAPTIONS

Fig. 1. Electron Number Density vs. Temperature for Steady State and Homogeneous
Plasma

Fig. 2. Electron Number Density vs. Temperature for Homogeneous Transient Plasma

Fig. 3. Electron Number Density vs. Temperature for Steady Spatial Inhomogeneous
Plasma
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APPENDIX

To determine the coefficients A], A etc., in the Eqs. (102) and

PR
(108) for the electron and ion gas, we shall use Eq. (89) together with Egs. (93-101)

1
by negnecting the terms of order ( 2" )-2_ or higher. The following results are
' 1
cbtained;
For electron gas,
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For ion gas,
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